

Photoredox-Catalyzed Intramolecular Difluoromethylation of N-Benzylacrylamides Coupled with a Dearomatizing Spirocyclization: Access to CF₂H-Containing 2-Azaspiro[4.5]deca-6,9-diene-3,8-diones

Zuxiao Zhang, Xiao-Jun Tang, and William R. Dolbier, Jr.*

Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States

Supporting Information

ABSTRACT: A visible light-mediated difluoromethylation of N-benzylacrylamides with HCF₂SO₂Cl as the HCF₂ radical precursor is described. The reaction incorporates a tandem cyclization/dearomatization process to afford various difluoromethylated 2-azaspiro[4.5]deca-6,9-diene-3,8-diones bearing adjacent quaternary stereocenters under mild conditions in moderate to excellent yields.

rganofluorine compounds have found wide application within pharmaceutical, agrochemical, and materials research due to their unique physical, chemical, and biological properties. Thus, selective fluorination and fluoroalkylation have attracted considerable interest in recent years. Further, the development of methods for trifluoromethylation has been a key area of research over the last several decades.² In contrast, incorporation of difluoromethyl groups has received much less attention, although great strides have recently been made in this area.3 Indeed, the CF₂H group has become an increasingly attractive component of drug and agrochemical design.⁴ The lack of good nucleophilic or electrophilic difluoromethylation reagents has made difluoromethylation considerably more challenging than trifluoromethylation.⁵ In answer to this challenge, there have been several elegant reports of difluoromethylation, mainly transition-metal-mediated or -catalyzed coupling reactions that introduce CF2H into aromatic rings.⁶ There have also been papers describing direct difluoromethylation via radical processes. For example, in 2012, the Baran group described an elegant direct C-H difluoromethylation of heteroarenes using a zinc sulfinate salt as the CF₂H radical precursor. Later, Hu and co-workers developed a concise preparation of sodium difluoromethanesulfinate which was also used as a good CF2H radical precursor.8 However, both of these reactions require an excess amount of oxidant to generate the radical.

In recent years, visible light-driven photoredox catalysis has become recognized as an ecofriendly and powerful tool for organic synthesis.9 Within our own group's efforts, difluoromethanesulfonyl chloride, in combination with photoredox catalysis, has provided what is arguably a more efficient method for generating the difluoromethyl radical under conditions that allowed good reactivity toward various unsaturated bonds. 10 In our work, photoredox-catalyzed radical cascade reactions have

been demonstrated as an excellent approach to constructing complex organic skeletons bearing fluoroalkyl groups, in particular the difluoromethyl group (Scheme 1).

Scheme 1. Photoredox-Catalyzed Difluoromethylation of **Unsaturated Bonds**

Previous work HCF-SO-CI

Azaspirocycles are a structural feature frequently found in natural products. Indeed, azaspirocyclic cyclohexadienones are pivotal intermediates in the preparation of an extensive range of biologically active molecules. ¹¹ Moreover, dearomatization reactions have drawn increasing attention as a powerful strategy to construct ring systems from readily available aromatic compounds. ¹² The dearomatization of phenols to cyclo-

Received: January 18, 2016 Published: February 11, 2016 Organic Letters Letter

hexadienones is a process that has been used several times in complex total syntheses. 13 Several examples of radical spirocyclization onto a p-methoxyaryl ring have been reported.¹⁴ In addition, the Xia group reported visible-light induced trifluoromethylation of N-arylcinnamamides, using Togni's reagent, which afford a variety of CF3-containing dihydroquinolin-2(1H)-ones and 1-azaspiro[4.5]decanes. Zhu and co-workers have used the same strategy successfully to introduce difluoroacetyl into quinoline-2-ones and 1azaspiro[4.5]decanes. 16 Regarding 2-azaspiro[4.5]decyl systems, the Wang group has developed a copper-catalyzed intramolecular trifluoromethylation of N-benzylacrylamides coupled with dearomatization using the Togni reagent as the CF₃ source.¹⁷ Until the present work, there have been no methods for introduction of the CF2H group into this kind of azaspiro cyclic system. Consistent with our group's previous work, we hereby report our current results on the introduction of not only the difluoromethyl group but also the CF3 group and perfluoroalkyl groups into azaspiro [4,5] decyl systems.

The reaction conditions were optimized using *N*-(4-methoxy)benzylacrylamide (1a) as a model substrate and difluoromethanesulfonyl chloride as the radical source (Table 1). Various solvents were initially screened, and it was found

Table 1. Optimization of Reaction Conditions^a

1a-c					
	entry	catalyst	solvent	base	yield ^b (%)
	1	$Ir(ppy)_3$	CH ₃ CN	K ₂ HPO ₄	40
	2	$Ir(ppy)_3$	dioxane	K_2HPO_4	9
	3	$Ir(ppy)_3$	HOAc	K_2HPO_4	20
	4	$Ir(ppy)_3$	DCE	K_2HPO_4	30
	5	$Ir(ppy)_3$	CH ₃ CN	K_2CO_3	trace
	6	$Ir(ppy)_3$	CH ₃ CN	Na ₂ CO ₃	trace
	7	$Ir(ppy)_3$	CH ₃ CN	KOAc	trace
	8	$Ir(ppy)_3$	CH ₃ CN	NaOAc	trace
	9 ^c	$Ir(ppy)_3$	CH ₃ CN	K_2HPO_4	trace
	10	$[Ir(dtbpy) (ppy)_2]PF_6$	CH ₃ CN	K_2HPO_4	44
	11 ^d	Cu(dap) ₂ Cl	DCE	Ag_2CO_3	21
	12 ^e	$Ir(ppy)_3$	CH ₃ CN	K_2HPO_4	50
	13 ^e	$Ir(ppy)_3$ (2 mol %)	CH ₃ CN	K_2HPO_4	80
	$14^{e_{i}f}$	$Ir(ppy)_3$ (2 mol %)	CH ₃ CN	K_2HPO_4	82
	$15^{e,g}$	$Ir(ppv)_2$ (2 mol %)	CH ₂ CN	K ₂ HPO ₄	81

^aReactions were run with 0.1 mmol of 1a (R = Me), 0.2 mmol of HCF₂SO₂Cl, 0.2 mmol of base, and 0.001 mmol of catalyst in 1 mL of solvent under visible light. ^bAll yields were based on 1a using N_iN_j -dimethyltrifluoroacetamide as the internal standard. ^cReaction runs at 50 °C. ^dReaction runs at 75 °C. ^e2.0 equiv of water as additive. ^fSubstrate 1b (R = benzyl). ^gSubstrate 1c (R = p-methoxybenzyl).

that when CH₃CN (entry 1) was used as solvent the desired difluoromethyl-containing product, 2-azaspiro[4.5]decane 2a, was obtained in 40% yield as determined by ¹⁹F NMR (entry 1). Encouraged by the results, we examined alternative bases in attempting to improve the yield. Unfortunately, the use of K_2CO_3 , Na_2CO_3 , KOAc, and NaOAc all hindered the reaction, with only trace amounts of product being detected (entries 5–8). In these experiments, considerable starting material and difluoromethanesulfonyl chloride remained after workup.

Therefore, an attempt was made to promote the reaction by raising the temperature. However, this led to no product being formed, with most of the sulfonyl chloride being destroyed by the base (entry 9). Reasoning that the low yield was due to ineffective oxidation of the intermediate cyclohexadienyl radical, other catalysts were tried. [Ir(dtbpy) (ppy)₂]PF₆ give a somewhat higher yield, but Cu(dap)₂Cl only afforded 21% of product (entries 10 and 11). Water was added to the reaction mixture (entry 12) with the hope of increasing the polarity of the medium and thus stabilizing the desired carbocation intermediate, and the desired reaction was enhanced, giving 50% yield of product. By increasing the amount of catalyst to 2 mol % under these condition the yield was increased to 80%, with all of the starting materials being consumed (entry 13). The use of alternative protecting groups on the phenol such as benzyl (1b) or p-methoxybenzyl (1c) also resulted in good reactivity and afforded product 1a in very good yields (entry 14 and 15).

Using the conditions described in Table 1, entry 14, we investigated the scope of variously substituted *N*-benzylacrylamides that might be effective in this reaction (Scheme 2).

Scheme 2. Substrate Scope of Photoredox-Catalyzed Difluoromethylation/Spirocyclization a,b

^aReactions were run with 0.2 mmol of **1b**, 0.4 mmol of HCF_2SO_2CI , 0.4 mmol of base, and 0.002 mmol of catalyst in 2 mL of dioxane with 8 mg water under visible light. ^bIsolated yield. ^cYields were determined by ¹⁹F NMR using N_iN_i -dimethyltrifluoroacetamide as internal standard.

Initially, various N-substituents (R_1) were examined. Those with n-butyl, cyclohexyl, isopropyl, or the more bulky tert-butyl substituent all afforded the corresponding 2-azaspiro[4.5]deca-6,9-diene-3,8-diones 2a—f in very good yields. However, when an N-phenyl substituent was used, the reaction became more complex, and the reaction only gave 48% of the desired product 2g along with 50% yield of a byproduct 2g', both of which could be isolated. This side product derived, of course, from competitive cyclization of the radical onto the N-phenyl substituent. Use of an N-benzyl substituent gave only the

Organic Letters Letter

normal product, **2h**, in good yield. When a much smaller group, such as methyl, was on the nitrogen, the reaction become sluggish and only 20% of product **2i** could be detected. This indicates that the steric influence of the *N*-substituent plays an important role in facilitating the cyclization.

When substrates with various substituents R_2 on the aromatic ring were investigated, it was found that those with either electron-donating groups (i.e., methoxy) or electron-with-drawing groups such as F, Cl, or Br all react smoothly to afford products $2\mathbf{j}-\mathbf{m}$ in moderate to good yield. In addition, all of the nonaxisymmetric substrates gave pairs of diastereomers in an approximately 1:1 ratio. When the phenol was replaced by a naphthol, the desired product $2\mathbf{p}$ was also obtained in good yield. Interestingly, in contrast to our previous report on cyclizations of phenylacrylamides (Scheme 1), 10a acrylamide $1\mathbf{q}$ without the α -methyl substituent ($R_3 = H$) proved to be a good substrate in this reaction, producing desired product $2\mathbf{q}$ in 83% yield.

In order to develop a unified strategy to introduce various fluoroalkyl groups into the azaspiro ring system, other sulfonyl chlorides were also investigated (Scheme 3). Since

Scheme 3. Photoredox-Catalyzed Difluoromethylation/ Dearomatization with Other Fluoroalkyl Radical Sources^a

^aReactions were run with 0.2 mmol of 1b, 0.4 mmol of HCF₂SO₂CI, 0.4 mmol of base, and 0.002 mmol of catalyst in 2 mL of CH₃CN with 8 mg of water under visible light. ^bIsolated yield.

BrCF₂COOEt is commercially available and also had been proved to be efficiently reduced by the photoredox catalyst, this bromide was used as the CF₂COOEt radical source, which in the event produced the desired, analogous product 3 in good yield. Then it was shown that both CF₃SO₂Cl and C₄F₉SO₂Cl gave their corresponding products, 4 and 5, in very good yield.

To our surprise, when CH₂FSO₂Cl and CF₃CH₂SO₂Cl were used as radical sources, the only products to be observed were products that had retained the SO₂ group, 6 and 7, which were obtained in good yield (Scheme 4). This result can be contrasted with the results in our previous report when we used these same sulfonyl chlorides, where the SO₂ was lost. ^{10a} We reasoned that the smaller electronegativity of the CH₂F and CF₃CH₂ groups would make the loss of SO₂ more difficult. Thus, under the present room temperature reaction conditions, SO₂ was not eliminated. (The reactions with these sulfonyl chlorides in the earlier report were carried out at 105 °C.)

Scheme 4. Substrates Scope with SO₂ Group Retained^{a,b}

^aReactions were run with 0.2 mmol of 1, 0.4 mmol of R₂SO₂CI, 0.4 mmol of base, and 0.004 mmol of catalyst in 2 mL of CH₃CN with 8 mg of water under visible light. ^bIsolated yield.

Considering the contrasting results, the reaction was attempted at 105 °C, using DCE as solvent, but unfortunately, no desired product was formed. It appears that at the higher temperature (see Table 1, entry 9) the sulfonyl chlorides were quickly destroyed by the base. A few substrates were also examined using these sulfonyl chlorides, and both provided the sulfonyl products (6 and 7) in medium to very good yields.

The proposed mechanism for these reactions is shown in Scheme 5. First, the sulfonyl chloride is reduced by the excited

Scheme 5. Proposed Mechanism

Ir catalyst forming the difluoromethyl radical. Then the radical attacks the double bond to form intermediate radical **A**, which would quickly undergo cyclization to form the intermediate radical **B**. Intermediate B is then oxidized by the hyper Ir catalyst to form intermediate cation **C**, regenerating the catalyst. The water might stabilize carbocation **C** and thus promote the catalytic cycle. Finally, water under the basic conditions reacts with the carbocation to form the product.

In conclusion, a photoredox-catalyzed cascade reaction involving difluoromethylation of substituted *N*-benzylacrylamides, 5-exo cyclization, and resultant dearomatization has been described. It is the first example of introduction of the difluoromethyl group into the azaspiro ring system. This reaction also supplied a unified strategy to introduce other fluoroalkyl groups into spirocyclohexadienones bearing adjacent quaternary stereocenters under mild conditions in good to excellent yield. Considering the wide substrate scope and simple procedure, this reaction should be useful for the

Organic Letters Letter

preparation of a host of potential medicinal and agrochemical agents.

■ ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.6b00168.

Experimental procedures, compound characterization data, and NMR spectra of new compounds (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: wrd@chem.ufl.edu.

Notes

The authors declare no competing financial interest.

REFERENCES

- (1) Recent reviews: (a) Kirsch, P. Modern Fluoroorganic Chemistry, 2nd ed.; Wiley—VCH: Weinheim, 2013. (b) Muller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881. (c) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320. (d) O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308. (e) Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology; Wiley-Blackwell: Chichester, 2009. (f) Huchet, Q. A.; Kuhn, B.; Wagner, B.; Fischer, H.; Kansy, M.; Zimmerli, D.; Carreira, E. M.; Müller, K. J. Fluorine Chem. 2013, 152, 119. (g) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
- (2) Recent reviews on trifluoromethylations: (a) Nie, J.; Guo, H.-C.; Cahard, D.; Ma, J.-A. Chem. Rev. 2011, 111, 455. (b) Wu, X.-F.; Neumann, H.; Beller, M. Chem. Asian J. 2012, 7, 1744. (c) Macé, Y.; Magnier, E. Eur. J. Org. Chem. 2012, 2012, 2479. (d) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214. (e) Liu, H.; Gu, Z.; Jiang, X. Adv. Synth. Catal. 2013, 355, 617. (f) Chu, L.; Qing, F.-L. Acc. Chem. Res. 2014, 47, 1513. (g) Charpentier, J.; Fruh, N.; Togni, A. Chem. Rev. 2015, 115, 650.
- (h) Liu, X.; Xu, C.; Wang, M.; Liu, Q. Chem. Rev. 2015, 115, 683. (3) For reviews, see: (a) Hu, J.; Zhang, W.; Wang, F. Chem. Commun. 2009, 48, 7465. (b) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475. (c) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470. (d) Wu, X.-F.; Neumann, H.; Beller, M. Chem. Asian J. 2012, 7, 1744. (e) Jin, Z.; Hammond, G. B.; Xu, B. Aldrichimica Acta 2012, 45, 67. (f) Liu, T.; Shen, Q. Eur. J. Org. Chem. 2012, 2012, 6679. (g) Liu, X.; Xu, C.; Wang, M.; Liu, Q. Chem. Rev. 2015, 115, 683.
- (4) Erickson, J. A.; McLoughlin, J. I. J. Org. Chem. 1995, 60, 1626.
- (5) Fujikawa, K.; Fujioka, Y.; Kobayashi, A.; Amii, H. Org. Lett. 2011, 13, 5560.
- (6) (a) Fier, P. S.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 5524. (b) Prakash, G. K. S.; Ganesh, S. K.; Jones, J.-P.; Kulkarni, A.; Masood, K.; Swabeck, J. K.; Olah, G. A. Angew. Chem., Int. Ed. 2012, 51, 12090. (c) Jiang, X.-L.; Chen, Z.-H.; Xu, X.-H.; Qing, F.-L. Org. Chem. Front. 2014, 1, 774. (d) Matheis, C.; Jouvin, K.; Goossen, L. Org. Lett. 2014, 16, 5984. (e) Gu, Y.; Leng, X.-B.; Shen, Q. Nat. Commun. 2014, 5, 5405.
- (7) Fujiwara, Y.; Dixon, J. A.; Rodriguez, R. A.; Baxter, R. D.; Dixon, D. D.; Collins, M. R.; Blackmond, D. G.; Baran, P. S. J. Am. Chem. Soc. 2012, 134, 1494.
- (8) He, Z.; Tan, P.; Ni, C.; Hu, J. Org. Lett. 2015, 17, 1838.
- (9) Recent reviews on photoredox catalysis, see: (a) Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Chem. 2010, 2, 527. (b) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102. (c) Xuan, J.; Xiao, W. Angew. Chem., Int. Ed. 2012, 51, 6828. (d) Tucker, J. W.; Stephenson, C. R. J. J. Org. Chem. 2012, 77, 1617. (e) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322. (f) Xi,

- Y.; Yi, H.; Lei, A. Org. Biomol. Chem. 2013, 11, 2387. (g) Xie, J.; Jin, H.; Xu, P.; Zhu, C. Tetrahedron Lett. 2014, 55, 36. (h) Studer, A.; Curran, D. P. Angew. Chem., Int. Ed. 2016, 55, 58.
- (10) (a) Tang, X. J.; Thomoson, C. S.; Dolbier, W. R., Jr. Org. Lett. **2014**, 16, 4594. (b) Tang, X. J.; Dolbier, W. R., Jr. Angew. Chem., Int. Ed. **2015**, 54, 4246. (c) Zhang, Z.; Tang, X. J.; Thomoson, C. S.; Dolbier, W. R., Jr. Org. Lett. **2015**, 17, 3528. (d) Zhang, Z.; Tang, X. J.; Dolbier, W. R., Jr. Org. Lett. **2015**, 17, 4401. (e) Tang, X. J.; Zhang, Z.; Dolbier, W. R., Jr. Chem. Eur. J. **2015**, 21, 18961.
- (11) (a) Wardrop, D. J.; Burge, M. S.; Zhang, W.; Ortiz, J. A. Tetrahedron Lett. 2003, 44, 2587. (b) Rishton, G. M.; Schwanz, M. A. Tetrahedron Lett. 1988, 29, 2643. (c) Yang, Y. L.; Chang, F.-R.; Wu, Y.-C. Helv. Chim. Acta 2004, 87, 1392. (d) Kazmierski, W. M.; Furfine, E.; Spaltenstein, A.; Wright, L. L. Bioorg. Med. Chem. Lett. 2002, 12, 3431. (e) Albrightson, C. R.; Bugelski, P. J.; Berkhout, T. A.; Jackson, B.; Kerns, W. D.; Organ, A. J.; Badger, A. M. J. Pharmacol. Exp. Ther. 1995, 272, 689.
- (12) (a) Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996, 96, 1123. (b) Pape, A. P.; Kaliappan, K. P.; Kündig, E. P. Chem. Rev. 2000, 100, 2917. (c) Ortiz, F. L.; Iglesias, M. J.; Fernández, I.; Sánchez, C. M.; Gómez, G. R. Chem. Rev. 2007, 107, 1580. (d) Rousseaux, S.; García-Fortanet, J.; Sanchez, M. A. D. A.; Buchwald, S. L. J. Am. Chem. Soc. 2011, 133, 9282.
- (13) For selected examples, see: (a) Mejorado, L. H.; Pettus, T. R. R. J. Am. Chem. Soc. **2006**, 128, 15625. (b) Nicolaou, K. C.; Edmonds, D. J.; Li, A.; Tria, G. S. Angew. Chem., Int. Ed. **2007**, 46, 3942. (c) Roche, S. P.; Porco, J. A., Jr. Angew. Chem., Int. Ed. **2011**, 50, 4068.
- (14) (a) Hey, D. H.; Todd, A. R. J. Chem. Soc. C 1967, 1518. (b) Boivin, J.; Yousfi, M.; Zard, S. Z. Tetrahedron Lett. 1997, 38, 5985. (c) Ibarra-Rivera, T. R.; Gámez-Montaño, R.; Miranda, L. D. Chem. Commun. 2007, 3485. (d) Han, G.; Wang, Q.; Liu, Y.; Wang, Q. Org. Lett. 2014, 16, 5914.
- (15) Gao, F.; Yang, C.; Gao, G. L.; Zheng, L.; Xia, W. Org. Lett. 2015, 17, 3478.
- (16) Gu, Z.; Zhang, H.; Xu, P.; Cheng, Y.; Zhu, C. Adv. Synth. Catal. 2015, 357, 3057.
- (17) Han, G.; Liu, Y.; Wang, Q. Org. Lett. 2014, 16, 3188. (b) Han, G.; Wang, Q.; Liu, Y.; Wang, Q. Org. Lett. 2014, 16, 5914.